Hydrological objective functions and ensemble averaging with the Wasserstein distance

نویسندگان

چکیده

Abstract. When working with hydrological data, the ability to quantify similarity of different datasets is useful. The choice how make this quantification has a direct influence on results, measures emphasising particular sources error (for example, errors in amplitude as opposed displacements time and/or space). Wasserstein distance considers mass distributions through transport lens. In context, it “effort” required rearrange one distribution water into other. While being more broadly applicable, interest paid hydrographs work. adapted for two ways and tested calibration “averaging” hydrograph context. This alternative definition fit shown be successful accounting timing due imprecise rainfall measurements. averaging an ensemble suitable when differences among members are peak shape but not total volume, where traditional mean works well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gromov-Wasserstein Averaging of Kernel and Distance Matrices

This paper presents a new technique for computing the barycenter of a set of distance or kernel matrices. These matrices, which define the interrelationships between points sampled from individual domains, are not required to have the same size or to be in row-by-row correspondence. We compare these matrices using the softassign criterion, which measures the minimum distortion induced by a prob...

متن کامل

Variational Image Segmentation and Cosegmentation with the Wasserstein Distance

We present novel variational approaches for segmenting and cosegmenting images. Our supervised segmentation approach extends the classical Continuous Cut approach by a global appearance-based data term enforcing closeness of aggregated appearance statistics to a given prior model. This novel data term considers non-spatial, deformationinvariant statistics with the help of the Wasserstein distan...

متن کامل

Wasserstein Distance Measure Machines

This paper presents a distance-based discriminative framework for learning with probability distributions. Instead of using kernel mean embeddings or generalized radial basis kernels, we introduce embeddings based on dissimilarity of distributions to some reference distributions denoted as templates. Our framework extends the theory of similarity of Balcan et al. (2008) to the population distri...

متن کامل

Wasserstein distance and the distributionally robust TSP

Recent research on the robust and stochastic travelling salesman problem and the vehicle routing problem has seen many different approaches for describing the region of ambiguity, such as taking convex combinations of observed demand vectors or imposing constraints on the moments of the spatial demand distribution. One approach that has been used outside the transportation sector is the use of ...

متن کامل

Distributionally Robust Stochastic Optimization with Wasserstein Distance

Distributionally robust stochastic optimization (DRSO) is a robust approach to stochastic optimization problems in which the underlying distribution is not known exactly. It seeks a decision which hedges against the worst-case distribution in an ambiguity set, containing a family of distributions relevant to the considered problem. Unfortunately, the worst-case distributions resulting from many...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrology and Earth System Sciences

سال: 2023

ISSN: ['1607-7938', '1027-5606']

DOI: https://doi.org/10.5194/hess-27-991-2023